ASTM E 668 : 2020
Current
The latest, up-to-date edition.
Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
Hardcopy , PDF
English
08-01-2020
Committee |
E 10
|
DocumentType |
Standard Practice
|
Pages |
19
|
ProductNote |
This standard is also refers to ICRU 10e,ICRU 14,ICRU 17,ICRU 21,ICRU 33,ICRU 34.
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This practice covers procedures for the use of thermoluminescence dosimeters (TLDs) to determine the absorbed dose in a material irradiated by ionizing radiation. Although some elements of the procedures have broader application, the specific area of concern is radiation-hardness testing of electronic devices. This practice is applicable to the measurement of absorbed dose in materials irradiated by gamma rays, X rays, and electrons of energies from 12 to 60 MeV. Specific energy limits are covered in appropriate sections describing specific applications of the procedures. The range of absorbed dose covered is approximately from 10−2 to 104 Gy (1 to 106 rad), and the range of absorbed dose rates is approximately from 10−2 to 1010 Gy/s (1 to 1012 rad/s). Absorbed dose and absorbed dose-rate measurements in materials subjected to neutron irradiation are not covered in this practice. (See Practice E2450 for guidance in mixed fields.) Further, the portion of these procedures that deal with electron irradiation are primarily intended for use in parts testing. Testing of devices as a part of more massive components such as electronics boards or boxes may require techniques outside the scope of this practice.
Note 1:The purpose of the upper and lower limits on the energy for electron irradiation is to approach a limiting case where dosimetry is simplified. Specifically, the dosimetry methodology specified requires that the following three limiting conditions be approached: (a) energy loss of the primary electrons is small, (b) secondary electrons are largely stopped within the dosimeter, and (c) bremsstrahlung radiation generated by the primary electrons is largely lost.
1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.3This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM E 170 : 2024 | Standard Terminology Relating to Radiation Measurements and Dosimetry |
ASTM E 170 : 2020 | Standard Terminology Relating to Radiation Measurements and Dosimetry |
ASTM E 666 : 2021 | Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation |
ASTM E 170 : 2023 | Standard Terminology Relating to Radiation Measurements and Dosimetry |
ASTM E 2450 : 2023 | Standard Practice for Application of CaF<inf>2</inf>(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments |
ASTM E 2450 : 2016 | Standard Practice for Application of CaF<inf>2</inf>(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments |
ASTM E 666 : 2014 | Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.