• There are no items in your cart

ASTM E 1820 : 2018 : REV A : EDT 1

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Test Method for Measurement of Fracture Toughness

Available format(s)

Hardcopy , PDF

Superseded date

02-04-2020

Superseded by

ASTM E 1820 : 2020

Language(s)

English

Published date

11-01-2018

US$125.00
Excluding Tax where applicable

Committee
E 08
DocumentType
Test Method
Pages
65
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This test method covers procedures and guidelines for the determination of fracture toughness of metallic materials using the following parameters: K, J, and CTOD (δ). Toughness can be measured in the R-curve format or as a point value. The fracture toughness determined in accordance with this test method is for the opening mode (Mode I) of loading.

Note 1:Until this version, KIc could be evaluated using this test method as well as by using Test Method E399. To avoid duplication, the evaluation of KIc has been removed from this test method and the user is referred to Test Method E399.

1.2The recommended specimens are single-edge bend, [SE(B)], compact, [C(T)], and disk-shaped compact, [DC(T)]. All specimens contain notches that are sharpened with fatigue cracks.

1.2.1Specimen dimensional (size) requirements vary according to the fracture toughness analysis applied. The guidelines are established through consideration of material toughness, material flow strength, and the individual qualification requirements of the toughness value per values sought.

Note 2:Other standard methods for the determination of fracture toughness using the parameters K, J, and CTOD are contained in Test Methods E399, E1290, and E1921. This test method was developed to provide a common method for determining all applicable toughness parameters from a single test.

1.3The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.4This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM F 3056 : 2014 : EDT 1 Standard Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion
ASTM E 1823 : 2013 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 2899 : 2019 Standard Test Method for Measurement of Initiation Toughness in Surface Cracks Under Tension and Bending
ASTM F 3122 : 2014 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes
ASTM E 2215 : 2019 Standard Practice for Evaluation of Surveillance Capsules from Light-Water Moderated Nuclear Power Reactor Vessels
ASTM E 647 : 2015 : EDT 1 Standard Test Method for Measurement of Fatigue Crack Growth Rates
ASTM E 1457 : 2015 Standard Test Method for Measurement of Creep Crack Growth Times in Metals
ASTM F 3184 : 2016 Standard Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder Bed Fusion
ASTM F 3055 : 2014 : REV A Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion
ASTM E 185 : 2016 Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels
ASTM E 1253 : 2013 Standard Guide for Reconstitution of Irradiated Charpy-Sized Specimens
ASTM E 399 : 2019 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K<inf>Ic</inf > of Metallic Materials
ASTM F 2924 : 2014 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion
ASTM A 1099/A1099M : 2017 Standard Specification for Modified Alloy Steel Forgings, Forged Bar, and Rolled Bar Commonly Used in Oil and Gas Pressure Vessels
ASTM F 3001 : 2014 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion
ASTM E 2472 : 2012 : R2018 Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions
ASTM F 3302 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
ASTM F 3213 : 2017 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion
ASTM E 2818 : 2011(R2019) Standard Practice for Determination of Quasistatic Fracture Toughness of Welds
ASTM F 3318 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Specification for AlSi10Mg with Powder Bed Fusion – Laser Beam
ASTM E 636 : 2020 Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels

ASTM E 1921 : 2017 : REV A Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2017 Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1942 : 1998 : EDT 1 Standard Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing
ASTM E 2298 : 2015 Standard Test Method for Instrumented Impact Testing of Metallic Materials
ASTM E 2298 : 2009 Standard Test Method for Instrumented Impact Testing of Metallic Materials
ASTM E 1921 : 2015 : REV A : EDT 1 Standard Test Method for Determination of Reference Temperature, T<inf>o</inf>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 1997 Standard Test Method for Determination of Reference Temperature, T<sub>o</sub>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2014 : REV A Standard Test Method for Determination of Reference Temperature, T<inf>o</inf>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2015 : REV A Standard Test Method for Determination of Reference Temperature, T<inf>o</inf>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2019 Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2018 : REV A Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1942 : 1998 : R2018 : EDT 1 Standard Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing
ASTM E 1290 : 1999 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement
ASTM E 1823 : 1996 : EDT 1 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1921 : 2014 Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2019 : REV A Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2018 Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
ASTM E 1921 : 2015 Standard Test Method for Determination of Reference Temperature, T<inf>o</inf>, for Ferritic Steels in the Transition Range

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.