ASTM D 5607 : 2016
Current
The latest, up-to-date edition.
Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force
Hardcopy , PDF
English
01-31-2017
Committee |
D 18
|
DocumentType |
Test Method
|
Pages |
9
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method establishes requirements and laboratory procedures for performing direct shear strength tests on rock specimens under a constant normal load. It includes procedures for both intact rock strength and sliding friction tests, which can be performed on specimens that are homogeneous, or have planes of weakness, including natural or artificial discontinuities. Examples of an artificial discontinuity include a rock-concrete interface or a lift line from a concrete pour. Discontinuities may be open, partially or completely healed or filled (that is, clay fillings and gouge). Only one discontinuity per specimen can be tested. The test is usually conducted in the undrained state with an applied constant normal load. However, a clean, open discontinuity may be free draining, and, therefore, a test on a clean, open discontinuity could be considered a drained test. During the test, shear strength is determined at various applied stresses normal to the sheared plane and at various shear displacements. Relationships derived from the test data include shear strength versus normal stress and shear stress versus shear displacement (shear stiffness).
Note 1:The term “normal force” is used in the title instead of normal stress because of the indefinable area of contact and the minimal relative displacement between upper and lower halves of the specimen during testing. The actual contact areas during testing change, but the actual total contact surface is unmeasurable. Therefore nominal area is used for loading purposes and calculations.
Note 2:Since this test method makes no provision for the measurement of pore pressures, the strength values determined are expressed in terms of total stress, uncorrected for pore pressure.
1.2This standard applies to hard rock, medium rock, soft rock, and concrete.
1.3This test method is only applicable to quasi-static testing of rock or concrete specimens under monotonic shearing with a constant normal load boundary condition. The constant normal load boundary condition is appropriate for problems where the normal stress is constant along the discontinuity. The constant normal load boundary condition may not be appropriate for problems where shearing is dilatancy controlled and the normal stress is not constant along the discontinuity.
1.4All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.4.1The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design
1.5Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.
1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM D 6236 : 2011 | Standard Guide for Coring and Logging Cement - or Lime-Stabilized Soil (Withdrawn 2020) |
ASTM D 2216 : 2005 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass |
ASTM D 5079 : 2002 | Standard Practices for Preserving and Transporting Rock Core Samples |
ASTM D 653 : 2007 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 2216 : 2010 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass |
ASTM D 3740 : 2012 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2023 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2019 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2004 : REV A : EDT 1 | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2008 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 6026 : 2013 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 6026 : 2006 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 1999 : REV C | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 653 : 2024 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM E 122 : 2017 : R2022 | Standard Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process |
ASTM E 122 : 2017 | Standard Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process |
ASTM D 653 : 2022 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 653 : 2020 : EDT 1 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5079 : 1990 : R1996 | Standard Practices for Preserving and Transporting Rock Core Samples |
ASTM D 6026 : 1999 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 2011 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 6026 : 2001 : EDT 1 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 2010 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 653 : 2021 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 2216 : 2019 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass |
ASTM D 5079 : 2002 : R2006 | Standard Practices for Preserving and Transporting Rock Core Samples |
ASTM D 6026 : 1996 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 2004 : REV A | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2001 | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 653 : 2021 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM E 4 : 2021 | Standard Practices for Force Calibration and Verification of Testing Machines |
ASTM D 653 : 2021 : REV B | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6026 : 1996 : EDT 1 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 2012 : REV A | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2003 | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 2216 : 1998 | Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass |
ASTM D 5079 : 2008 | Standard Practices for Preserving and Transporting Rock Core Samples (Withdrawn 2017) |
ASTM D 6026 : 2021 | Standard Practice for Using Significant Digits and Data Records in Geotechnical Data |
ASTM D 2216 : 1971 | Standard Method of Laboratory Determination Of Moisture Content Of Soil |
ASTM D 653 : 2024 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6026 : 2001 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 3740 : 2004 | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM E 4 : 2024 | Standard Practices for Force Calibration and Verification of Testing Machines |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.