• Shopping Cart
    There are no items in your cart

ASTM D 4814 : 2020

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Specification for Automotive Spark-Ignition Engine Fuel

Available format(s)

Hardcopy , PDF

Superseded date

08-27-2020

Language(s)

English

Published date

02-01-2020

US$108.00
Excluding Tax where applicable

Committee
D 02
DocumentType
Standard
Pages
29
ProductNote
THIS STANDARD IS ALSO REFERES TO 16 CFR Part 306, CFR 40, CCR Title 17, CRC Report No. 638, CRC Report No. 666, CRC Report No. 667
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This specification covers the establishment of requirements of liquid automotive fuels for ground vehicles equipped with spark-ignition engines.

1.2This specification describes various characteristics of automotive fuels for use over a wide range of operating conditions. It provides for a variation of the volatility and water tolerance of automotive fuel in accordance with seasonal climatic changes at the locality where the fuel is used. For the period May 1 through Sept. 15, the maximum vapor pressure limits issued by the United States (U.S.) Environmental Protection Agency (EPA) are specified for each geographical area except Alaska and Hawaii. Variation of the antiknock index with seasonal climatic changes and altitude is discussed in Appendix X1. This specification neither necessarily includes all types of fuels that are satisfactory for automotive vehicles, nor necessarily excludes fuels that can perform unsatisfactorily under certain operating conditions or in certain equipment. The significance of each of the properties of this specification is shown in Appendix X1.

1.3The spark-ignition engine fuels covered in this specification are gasoline and its blends with oxygenates, such as alcohols and ethers and where gasoline is the primary component by volume in the blend. The concentrations and types of oxygenates are not specifically limited in this specification. The composition of both unleaded and leaded fuel is limited by economic, legal, and technical consideration, but their properties, including volatility, are defined by this specification. In many countries, regulatory authorities having jurisdiction have set laws and regulations that limit the concentration of oxygenates and certain other compounds found in spark-ignition engine fuel. In the United States, oxygenate types and concentrations are limited to those approved under the U.S. Environmental Protection Agency's (EPA) substantially similar rule (see X3.3.1), waivers, and partial waivers including some restrictions on vehicle and equipment use (see X3.3.2). With regard to fuel properties, including volatility, this specification can be more or less restrictive than the EPA rules, regulations, and waivers. Refer to Appendix X3 for discussions of EPA rules relating to fuel volatility, lead and phosphorous contents, sulfur content, benzene content, deposit control additive certification, and use of oxygenates in blends with unleaded gasoline. Contact the EPA for the latest versions of the rules and additional requirements.

1.4This specification does not address the emission characteristics of reformulated spark-ignition engine fuel. Reformulated spark-ignition engine fuel is required in some areas to lower emissions from automotive vehicles, and its characteristics are described in the research report on reformulated spark-ignition engine fuel.2 However, in addition to the legal requirements found in this research report, reformulated spark-ignition engine fuel should meet the performance requirements found in this specification.

1.5This specification represents a description of automotive fuel as of the date of publication. The specification is under continuous review, which can result in revisions based on changes in fuel, automotive requirements, or test methods, or a combination thereof. All users of this specification, therefore, should refer to the latest edition.

Note 1:If there is any doubt as to the latest edition of Specification D4814, contact ASTM International Headquarters.

1.6Tests applicable to gasoline are not necessarily applicable to its blends with oxygenates. Consequently, the type of fuel under consideration must first be identified in order to select applicable tests. Test Method D4815 provides a procedure for determining oxygenate concentration in mass percent. Test Method D4815 also includes procedures for calculating mass oxygen content and oxygenate concentration in volume percent. Appendix X4 provides a procedure for calculating the mass oxygen content of a fuel using measured oxygenate type, oxygenate concentration in volume percent, and measured density or relative density of the fuel.

1.7The following applies to all specified limits in this standard: For purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded “to the nearest unit” in the right-most significant digit used in expressing the specification limit, in accordance with the rounding method of Practice E29. For a specification limit expressed as an integer, a trailing zero is significant only if the decimal point is specified. For a specified limit expressed as an integer, and the right-most digit is non-zero, the right-most digit is significant without a decimal point being specified. This convention applies to specified limits in Tables 1, 3, and X8.1, and it will not be observed in the remainder of this specification.

1.8The values stated in SI units are the standard, except when other units are specified by U.S. federal regulation. Values given in parentheses are provided for information only.

Note 2:Many of the values shown in Table 1 were originally developed using U.S. customary units and were subsequently soft-converted to SI values. As a result, conversion of the SI values will sometimes differ slightly from the U.S. customary values shown because of round-off. In some cases, U.S. federal regulations specify non-SI units.


1.9This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.10This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM D 7717 : 2011 : R2017 Standard Practice for Preparing Volumetric Blends of Denatured Fuel Ethanol and Gasoline Blendstocks for Laboratory Analysis
ASTM D 6469 : 2017 Standard Guide for Microbial Contamination in Fuels and Fuel Systems
ASTM F 2207 : 2006 : R2019 Standard Specification for Cured-in-Place Pipe Lining System for Rehabilitation of Metallic Gas Pipe
ASTM D 7671 : 2010 : R2015 Standard Test Method for Corrosiveness to Silver by Automotive Spark–Ignition Engine Fuel–Silver Strip Method
ASTM D 7667 : 2010 : R2015 Standard Test Method for Determination of Corrosiveness to Silver by Automotive Spark-Ignition Engine Fuel—Thin Silver Strip Method
ASTM D 7719 : 2018 Standard Specification for High Aromatic Content Unleaded Hydrocarbon Aviation Gasoline
ASTM F 2507 : 2015 Standard Specification for Recreational Airpark Design (Withdrawn 2024)
ASTM D 8076 : 2019 : REV A Standard Specification for 100 Research Octane Number Test Fuel for Automotive Spark-Ignition Engines
ASTM D 2700 : 2019 Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
ASTM D 7920 : 2015 : EDT 1 Standard Test Method for Determination of Fuel Methanol (M99) and Methanol Fuel Blends (M10 to M99) by Gas Chromatography
ASTM D 5983 : 2018 Standard Specification for Methyl Tertiary-Butyl Ether (MTBE) for Blending With Gasolines for Use as Automotive Spark-Ignition Engine Fuel
ASTM D 7932 : 2017 Standard Specification for Printed, Pressure-Sensitive Adhesive Labels for Use in Extreme Distribution Environments
ASTM D 7619 : 2017 Standard Test Method for Sizing and Counting Particles in Light and Middle Distillate Fuels, by Automatic Particle Counter
ASTM D 7548 : 2016 : REV A Standard Test Method for Determination of Accelerated Iron Corrosion in Petroleum Products
ASTM D 7794 : 2018 : REV A Standard Practice for Blending Mid-Level Ethanol Fuel Blends for Flexible-Fuel Vehicles with Automotive Spark-Ignition Engines
ASTM D 6421 : 2019 Standard Test Method for Evaluating Automotive Spark-Ignition Engine Fuel for Electronic Port Fuel Injector Fouling by Bench Procedure
ASTM D 3120 : 2008 : R2019 Standard Test Method for Trace Quantities of Sulfur in Light Liquid Petroleum Hydrocarbons by Oxidative Microcoulometry
ASTM D 7862 : 2019 Standard Specification for Butanol for Blending with Gasoline for Use as Automotive Spark-Ignition Engine Fuel
ASTM D 7451 : 2019 Standard Test Method for Water Separation Properties of Light and Middle Distillate, and Compression and Spark Ignition Fuels
ASTM F 1743 : 2017 Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)
ASTM D 5797 : 2018 Standard Specification for Methanol Fuel Blends (M51–M85) for Methanol-Capable Automotive Spark-Ignition Engines
ASTM D 7096 : 2019 Standard Test Method for Determination of the Boiling Range Distribution of Gasoline by Wide-Bore Capillary Gas Chromatography
ASTM D 2699 : 2019 Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
ASTM D 4806 : 2019 : REV A Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.