ASTM D 4530 : 2015 : R2020
Current
The latest, up-to-date edition.
Standard Test Method for Determination of Carbon Residue (Micro Method)
Hardcopy , PDF
English
05-01-2020
Committee |
D 02
|
DocumentType |
Test Method
|
Pages |
7
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method covers the determination of the amount of carbon residue (see Note 1) formed after evaporation and pyrolysis of petroleum materials under certain conditions and is intended to provide some indication of the relative coke forming tendency of such materials.
1.2The test results are equivalent to the Conradson Carbon Residue test (see Test Method D189).
Note 1:This procedure is a modification of the original method and apparatus for carbon residue of petroleum materials, where it has been demonstrated that thermogravimetry is another applicable technique.2 However, it is the responsibility of the operator to establish operating conditions to obtain equivalent results when using thermogravimetry.
1.3This test method is applicable to petroleum products that partially decompose on distillation at atmospheric pressure and was tested for carbon residue values of 0.10 % to 30 % (m/m). Samples expected to be below 0.10 weight % (m/m) residue should be distilled to remove 90 % (V/V) of the flask charge (see Section 9). The 10 % bottoms remaining is then tested for carbon residue by this test method.
1.4Ash-forming constituents, as defined by Test Method D482, or non-volatile additives present in the sample will add to the carbon residue value and be included as part of the total carbon residue value reported.
1.5Also in diesel fuel, the presence of alkyl nitrates, such as amyl nitrate, hexyl nitrate, or octyl nitrate, causes a higher carbon residue value than observed in untreated fuel, which may lead to erroneous conclusions as to the coke-forming propensity of the fuel. The presence of alkyl nitrate in the fuel may be detected by Test Method D4046.
1.6The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6.1Exception—6.4 and 6.5 include inch-pound units.
1.7WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.
1.8This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use. For specific warning statements, see 8.2.3 and 8.4.
1.9This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM D 6710 : 2017 | Standard Guide for Evaluation of Hydrocarbon-Based Quench Oil |
ASTM D 5372 : 2017 | Standard Guide for Evaluation of Hydrocarbon Heat Transfer Fluids |
ASTM D 524 : 2015 : R2019 | Standard Test Method for Ramsbottom Carbon Residue of Petroleum Products |
ASTM D 189 : 2006 : R2019 | Standard Test Method for Conradson Carbon Residue of Petroleum Products |
ASTM D 7665 : 2017 | Standard Guide for Evaluation of Biodegradable Heat Transfer Fluids |
ASTM D 7863 : 2017 | Standard Guide for Evaluation of Convective Heat Transfer Coefficient of Liquids |
ASTM D 4057 : 2019 | Standard Practice for Manual Sampling of Petroleum and Petroleum Products |
ASTM D 6074 : 2015 | Standard Guide for Characterizing Hydrocarbon Lubricant Base Oils |
ASTM E 133 : 1992 : R2016 | Standard Specification for Distillation Equipment |
ASTM D 482 : 2013 | Standard Test Method for Ash from Petroleum Products |
ASTM D 189 : 2006 : R2014 | Standard Test Method for Conradson Carbon Residue of Petroleum Products |
ASTM E 133 : 1992 : R2022 | Standard Specification for Distillation Equipment |
ASTM D 4177 : 2022 | Standard Practice for Automatic Sampling of Petroleum and Petroleum Products |
ASTM D 189 : 2024 | Standard Test Method for Conradson Carbon Residue of Petroleum Products |
ASTM E 1 : 2014 : R2020 | Standard Specification for ASTM Liquid-in-Glass Thermometers |
ASTM D 4057 : 2022 | Standard Practice for Manual Sampling of Petroleum and Petroleum Products |
ASTM D 4177 : 2020 | Standard Practice for Automatic Sampling of Petroleum and Petroleum Products |
ASTM D 4177 : 2022 : EDT 1 | Standard Practice for Automatic Sampling of Petroleum and Petroleum Products |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.