ASTM C 1499 : 2019
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
View Superseded by
Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature
Hardcopy , PDF
10-03-2024
English
07-01-2019
This test method covers the determination of the equibiaxial strength of advanced ceramics at ambient temperature via concentric ring configurations under monotonic uniaxial loading.
Committee |
C 28
|
DocumentType |
Test Method
|
Pages |
13
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
SupersededBy | |
Supersedes |
1.1This test method covers the determination of the equibiaxial strength of advanced ceramics at ambient temperature via concentric ring configurations under monotonic uniaxial loading. In addition, test specimen fabrication methods, testing modes, testing rates, allowable deflection, and data collection and reporting procedures are addressed. Two types of test specimens are considered: machined test specimens and as-fired test specimens exhibiting a limited degree of warpage. Strength as used in this test method refers to the maximum strength obtained under monotonic application of load. Monotonic loading refers to a test conducted at a constant rate in a continuous fashion, with no reversals from test initiation to final fracture.
1.2This test method is intended primarily for use with advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method is intended for use on monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fiber-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites do not macroscopically exhibit isotropic, homogeneous, continuous behavior, and the application of this test method to these materials is not recommended.
1.3The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM C 1683 : 2010 : R2019 | Standard Practice for Size Scaling of Tensile Strengths Using Weibull Statistics for Advanced Ceramics |
ASTM C 1368 : 2018 | Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Rate Strength Testing at Ambient Temperature |
ASTM C 1145 : 2019 | Standard Terminology of Advanced Ceramics |
ASTM E 83 : 2023 | Standard Practice for Verification and Classification of Extensometer Systems |
ASTM C 1145 : 1998 | Standard Terminology of Advanced Ceramics |
ASTM E 83 : 2000 : EDT 1 | Standard Practice for Verification and Classification of Extensometer |
ASTM E 83 : 2016 | Standard Practice for Verification and Classification of Extensometer Systems |
ASTM E 83 : 1998 : EDT 1 | Standard Practice for Verification and Classification of Extensometer |
ASTM C 1322 : 2015 | Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics |
ASTM E 337 : 2015 : R2023 | Standard Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures) |
ASTM E 337 : 2015 | Standard Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures) |
ASTM E 6 : 2002 | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM C 1259 : 2021 | Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration |
ASTM C 1322 : 2015 : R2024 | Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics |
ASTM C 1239 : 2013 : R2018 | Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics |
ASTM C 1322 : 1996 : REV A | Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics |
ASTM E 6 : 2015 : EDT 3 | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM C 1239 : 2000 | Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics |
ASTM C 1259 : 2015 | Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration |
ASTM E 6 : 2023 : REV A | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM E 4 : 2021 | Standard Practices for Force Calibration and Verification of Testing Machines |
ASTM C 1259 : 1998 | Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration |
ASTM C 1322 : 2015 : R2019 | Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics |
ASTM E 6 : 2015 : EDT 4 : REDLINE | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM E 6 : 2015 : EDT 4 | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM E 6 : 2023 | Standard Terminology Relating to Methods of Mechanical Testing |
ASTM C 1145 : 2006 : R2013 : EDT 1 | Standard Terminology of Advanced Ceramics |
ASTM E 4 : 2024 | Standard Practices for Force Calibration and Verification of Testing Machines |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.