• Shopping Cart
    There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

EN 12975-2:2006

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Thermal solar systems and components - Solar collectors - Part 2: Test methods

Superseded date

15-11-2013

Superseded by

EN ISO 9806:2017

Published date

29-03-2006

Sorry this product is not available in your region.

Foreword
Introduction
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols and units
5 Reliability testing of liquid heating collectors
  5.1 General
  5.2 Internal pressure tests for absorbers
       5.2.1 Inorganic absorbers
       5.2.2 Absorbers made of organic materials
              (plastics or elastomers)
  5.3 High-temperature resistance test
       5.3.1 Objective
       5.3.2 Apparatus and procedure
       5.3.3 Test conditions
       5.3.4 Results
  5.4 Exposure test
       5.4.1 Objective
       5.4.2 Apparatus and procedure
       5.4.3 Test conditions
       5.4.4 Results
  5.5 External thermal shock test
       5.5.1 Objective
       5.5.2 Apparatus and procedure
       5.5.3 Test conditions
       5.5.4 Results
  5.6 Internal thermal shock test
       5.6.1 Objective
       5.6.2 Apparatus and procedure
       5.6.3 Test conditions
       5.6.4 Results
  5.7 Rain penetration test
       5.7.1 Objective
       5.7.2 Apparatus and procedure
       5.7.3 Test conditions
       5.7.4 Results
  5.8 Freeze resistance test
       5.8.1 Objective
       5.8.2 Apparatus and procedure
       5.8.3 Test conditions
       5.8.4 Results
  5.9 Mechanical load test
       5.9.1 Positive pressure test of the collector
       5.9.2 Negative pressure test of the collector
  5.10 Impact resistance test (optional)
       5.10.1 Objective
       5.10.2 Apparatus and procedure
       5.10.3 Test conditions
       5.10.4 Results
  5.11 Final inspection
  5.12 Test report
6 Thermal performance testing of liquid heating collectors
  6.1 Glazed solar collectors under steady state conditions
       (including pressure drop)
       6.1.1 Collector mounting and location
       6.1.2 Instrumentation
       6.1.3 Test installation
       6.1.4 Outdoor steady-state performance test
       6.1.5 Steady-state efficiency test using a solar
              irradiance simulator
       6.1.6 Determination of the effective thermal capacity
              and the time constant of a collector
       6.1.7 Collector incidence angle modifier
       6.1.8 Determination of the pressure drop across a collector
  6.2 Unglazed solar collectors under steady state conditions
       (including pressure drop)
       6.2.1 Collector mounting and location
       6.2.2 Instrumentation
       6.2.3 Test installation
       6.2.4 Outdoor steady state efficiency test
       6.2.5 Steady-state efficiency test using a solar irradiance
              simulator
       6.2.6 Determination of the effective thermal capacity
              and the time constant of a collector
       6.2.7 Incidence angle modifier (optional)
       6.2.8 Determination of the pressure drop across a collector
  6.3 Glazed and unglazed solar collectors under
       quasi-dynamic conditions
       6.3.1 Collector mounting and location
       6.3.2 Instrumentation
       6.3.3 Test installation
       6.3.4 Outdoor efficiency test
       6.3.5 Determination of the effective thermal capacity
       6.3.6 Collector incidence angle modifier
Annex A (normative) Schematics for durability and
                    reliability tests
Annex B (normative) Durability and reliability test report
                    sheets
      B.1 Record of test sequence and summary of main
           results
      B.2 Internal pressure test for inorganic absorbers
           B.2.1 Technical details of collector
           B.2.2 Test conditions
           B.2.3 Test results
      B.3 Internal pressure test for absorbers made of organic
           materials
           B.3.1 Technical details of collector
           B.3.2 Test conditions
           B.3.3 Test results
      B.4 High-temperature resistance test
           B.4.1 Method used to heat collectors
           B.4.2 Test conditions
           B.4.3 Test results
      B.5 Exposure test
           B.5.1 Test conditions
           B.5.2 Test results
           B.5.3 Climatic conditions for all days during the test
           B.5.4 Time periods in which irradiance and surrounding
                 air temperature have values greater than those
                 specified in Table 4
           B.5.5 Inspection results
      B.6 External thermal shock test:
           B.6.1 Test conditions
           B.6.2 Test results
      B.7 Internal thermal shock test:
           B.7.1 Test conditions
           B.7.2 Test results
      B.8 Rain penetration test
           B.8.1 Test conditions
           B.8.2 Test results
      B.9 Freeze resistance test
           B.9.1 Collector type
           B.9.2 Test conditions
           B.9.3 Test results
      B.10 Mechanical load test
           B.10.1 Positive pressure test of the collector cover
           B.10.2 Negative pressure test of fixings between the
                  cover and the collector box
           B.10.3 Negative pressure test of collector mountings
      B.11 Impact resistance test using steel balls
           B.11.1 Test conditions
           B.11.2 Test procedure
           B.11.3 Test results
      B.12 Impact resistance test using ice balls
           B.12.1 Test conditions
           B.12.2 Test procedure
           B.12.3 Test results
      B.13 Final inspection results
Annex C (normative) Stagnation temperature of liquid
                    heating collectors
      C.1 General
      C.2 Determination of stagnation temperature
Annex D (normative) Performance test report for glazed
                    solar collectors
      D.1 General
      D.2 Solar collector description
      D.3 Test results
Annex E (normative) Performance test report for unglazed
                    solar collectors
      E.1 General
      E.2 Solar collector description
      E.3 Test results
Annex F (normative) Modelling of the coefficients c[1] to c[6]
                    of the collector model of 6.3
Annex G (normative) Measurement of effective thermal
                    capacity
      G.1 Test installation
      G.2 Indoor test procedure
          G.2.1 General
          G.2.2 Measurements
          G.2.3 Calculation of the effective thermal capacity
          G.2.4 Determination of effective thermal capacity from
                experimental data
      G.3 Outdoor or solar irradiance simulator test procedure
Annex H (informative) Comparison of the collector model
                      of 6.1 to the collector model of 6.3
Annex I (informative) Properties of water
      I.1 Density of water (at 1 bar) in kg/m[3]
      I.2 Specific heat capacity of water (at 1 bar) in kJ/(kg K)
Annex J (informative) Performance test report summary for
                      quasi dynamic test method
Annex K (informative) General guidelines for the assessment
                      of uncertainty in solar collector efficiency
                      testing
      K.1 Introduction
      K.2 Measurement uncertainties in solar collector
          efficiency testing
Annex L (informative) Determination of the pressure drop
                      across a collector
      L.1 General
      L.2 Test installation
      L.3 Preconditioning of the collector
      L.4 Test procedure
      L.5 Measurements
      L.6 Pressure drop caused by fittings
      L.7 Test conditions
      L.8 Calculation and presentation of results
Bibliography

This European Standard specifies test methods for validating the durability, reliability and safety requirements for liquid heating collectors as specified in EN 12975-1. This standard also includes three test methods for the thermal performance characterisation for liquid heating collectors.It is not applicable to those collectors in which the thermal storage unit is an integral part of the collector to such an extent that the collection process cannot be separated from the storage process for the purpose of making measurements of these two processes.It is basically applicable to tracking concentrating collectors, thermal performance testing as given in 6.3 (quasi dynamic testing) is also applicable to most concentrating collector designs, from stationary non-imaging concentrators as CPCs to high concentrating tracking designs. Parts of the solar radiation measurement should be adjusted in case of a tracking collector and in case a pyrheliometer is used to measure beam radiation.Collectors that are custom built (built in; e.g. roof integrated collectors that do not compose of factory made modules and are assembled directly on the place of installation) cannot be tested in their actual form for durability, reliability and thermal performance according to this standard. Instead, a module with the same structure as the ready collector may be tested. The module gross area should be at least 2 m2. The test is valid only for larger collectors than the tested module.

Committee
CEN/TC 312
DevelopmentNote
Supersedes PREN 12975-2. (06/2006)
DocumentType
Standard
PublisherName
Comite Europeen de Normalisation
Status
Superseded
SupersededBy

DIN EN 13203-3:2010-12 Solar supported gas-fired domestic appliances producing hot water - Appliances not exceeding 70 kW heat input and 500 litres water storage capacity - Part 3: Assessment of energy consumption
11/30247843 DC : 0 BS EN 12977-2 - THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 2: TEST METHODS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
DD CEN/TS 12977-2:2010 Thermal solar systems and components. Custom built systems Test methods for solar water heaters and combisystems
DIN EN 12977-1:2016-08 (Draft) THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 1: GENERAL REQUIREMENTS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
UNI EN 12977-1 : 2012 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 1: GENERAL REQUIREMENTS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
S.R. CEN TS 12977-1:2010 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 1: GENERAL REQUIREMENTS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
BS EN 12975-1 : 2006 THERMAL SOLAR SYSTEMS AND COMPONENTS - SOLAR COLLECTORS - PART 1: GENERAL REQUIREMENTS
10/30196950 DC : 0 BS ISO 9459-4 - SOLAR HEATING - DOMESTIC WATER HEATING SYSTEMS - PART 4: SYSTEM PERFORMANCE CHARACTERIZATION BY MEANS OF COMPONENT TESTS AND COMPUTER SIMULATION
04/30113515 DC : DRAFT MAY 2004 EN 12975-1 - THERMAL SOLAR SYSTEMS AND COMPONENTS - SOLAR COLLECTORS - PART 1: GENERAL REQUIREMENTS
EN 13203-3:2010 Solar supported gas-fired domestic appliances producing hot water - Appliances not exceeding 70 kW heat input and 500 litres water storage capacity - Part 3: Assessment of energy consumption
DIN EN 12976-1:2017-04 Thermal solar systems and components - Factory made systems - Part 1: General requirements
DD CEN/TS 12977-5:2010 Thermal solar systems and components. Custom built systems Performance test methods for control equipment
DD CEN/TS 12977-1:2010 Thermal solar systems and components. Custom built systems General requirements for solar water heaters and combisystems
07/30159519 DC : 0 BS EN 13203-3 - SOLAR SUPPORTED GAS-FIRED DOMESTIC APPLIANCES PRODUCING HOT WATER - APPLIANCES NOT EXCEEDING 70KW HEAT INPUT AND 500 LITERS WATER STORAGE CAPACITY - PART 3: ASSESSMENT OF ENERGY CONSUMPTION
04/30114109 DC : DRAFT MAY 2004 EN 12976-2 - THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - TEST METHODS
12/30257357 DC : 0 BS EN 12976-2 - THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - PART 2: TEST METHODS
DIN EN 12977-5:2016-08 (Draft) THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 5: PERFORMANCE TEST METHODS FOR CONTROL EQUIPMENT
S.R. CEN TS 12977-5:2010 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 5: PERFORMANCE TEST METHODS FOR CONTROL EQUIPMENT
S.R. CEN TS 12977-2:2010 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 2: TEST METHODS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
CSA F378 SERIES : 2011 SOLAR COLLECTORS
I.S. EN 12976-1:2017 THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - PART 1: GENERAL REQUIREMENTS
I.S. EN 12975-1:2006 THERMAL SOLAR SYSTEMS AND COMPONENTS - SOLAR COLLECTORS - PART 1: GENERAL REQUIREMENTS
VDI 6002 Blatt 1:2014-03 Solar heating for potable water - Basic principles - System technology and application in residential buildings
I.S. EN 15459:2007 ENERGY PERFORMANCE OF BUILDINGS - ECONOMIC EVALUATION PROCEDURE FOR ENERGY SYSTEMS IN BUILDINGS
DD ENV 12977-1:2001 Thermal solar systems and components. Custom built systems General requirements
11/30247849 DC : 0 BS EN 12977-5 - THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 5: PERFORMANCE TEST METHODS FOR CONTROL EQUIPMENT
UNI CEN/TS 12977-1 : 2010 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 1: GENERAL REQUIREMENTS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
NF EN 13203-3 : 2010 SOLAR SUPPORTED GAS-FIRED DOMESTIC APPLIANCES PRODUCING HOT WATER - APPLIANCES NOT EXCEEDING 70 KW HEAT INPUT AND 500 LITERS WATER STORAGE CAPACITY - PART 3: ASSESSMENT OF ENERGY CONSUMPTION
UNI EN 12977-2 : 2012 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 2: TEST METHODS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
UNI EN 12977-5 : 2012 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 5: PERFORMANCE TEST METHODS FOR CONTROL EQUIPMENT
DIN EN 12976-1:2014-07 (Draft) THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - PART 1: GENERAL REQUIREMENTS
CAN/CSA-F378 SERIES-11 (R2016) Solar collectors
EN 12976-1:2017 Thermal solar systems and components - Factory made systems - Part 1: General requirements
CSA F378 SERIES : 2011 : INC : UPD 1 : 2012 SOLAR COLLECTORS
UNI EN 15459 : 2008 ENERGY PERFORMANCE OF BUILDINGS - ECONOMIC EVALUATION PROCEDURE FOR ENERGY SYSTEMS IN BUILDINGS
UNI CEN/TS 12977-2 : 2010 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 2: TEST METHODS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
UNI EN 12975-1 : 2011 THERMAL SOLAR SYSTEMS AND COMPONENTS - SOLAR COLLECTORS - PART 1: GENERAL REQUIREMENTS
UNI EN 13203-3 : 2010 SOLAR SUPPORTED GAS-FIRED DOMESTIC APPLIANCES PRODUCING HOT WATER - APPLIANCES NOT EXCEEDING 70 KW HEAT INPUT AND 500 LITRES WATER STORAGE CAPACITY - PART 3: ASSESSMENT OF ENERGY CONSUMPTION
12/30257354 DC : 0 BS EN 12976-1 - THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - PART 1: GENERAL REQUIREMENTS
DIN EN 12977-2:2016-08 (Draft) THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 2: TEST METHODS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
BS EN 12977-5:2012 Thermal solar systems and components. Custom built systems Performance test methods for control equipment
BS EN 12977-2:2012 Thermal solar systems and components. Custom built systems Test methods for solar water heaters and combisystems
I.S. EN 13203-3:2010 SOLAR SUPPORTED GAS-FIRED DOMESTIC APPLIANCES PRODUCING HOT WATER - APPLIANCES NOT EXCEEDING 70 KW HEAT INPUT AND 500 LITRES WATER STORAGE CAPACITY - PART 3: ASSESSMENT OF ENERGY CONSUMPTION
BS EN 12976-1:2017 Thermal solar systems and components. Factory made systems General requirements
11/30247852 DC : 0 BS EN 12975-1 - THERMAL SOLAR SYSTEMS AND COMPONENTS - SOLAR COLLECTORS - PART 1: GENERAL REQUIREMENTS
EN 15459:2007 Energy performance of buildings - Economic evaluation procedure for energy systems in buildings
04/30113768 DC : DRAFT MAY 2004 EN 12976-1 - THERMAL SOLAR SYSTEMS AND COMPONENTS - FACTORY MADE SYSTEMS - PART 1: GENERAL REQUIREMENTS
DD ENV 12977-2:2001 Thermal solar systems and components. Custom built systems Test methods
05/30140990 DC : DRAFT OCT 2005 EN 15316-4-3 - HEATING SYSTEMS IN BUILDINGS - METHOD FOR CALCULATION OF SYSTEM ENERGY REQUIREMENTS AND SYSTEM EFFICIENCIES - PART 4-3: SPACE HEATING GENERATION SYSTEMS, THERMAL SOLAR SYSTEMS
UNE-EN 13203-3:2011 Solar supported gas-fired domestic appliances producing hot water - Appliances not exceeding 70 kW heat input and 500 litres water storage capacity - Part 3: Assessment of energy consumption
BS EN 15459:2007 Energy performance of buildings. Economic evaluation procedure for energy systems in buildings
EN 12975-1:2006+A1:2010 Thermal solar systems and components - Solar collectors - Part 1: General requirements
DIN EN 15459:2008-06 ENERGY PERFORMANCE OF BUILDINGS - ECONOMIC EVALUATION PROCEDURE FOR ENERGY SYSTEMS IN BUILDINGS
DIN EN 12977-5:2012-06 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 5: PERFORMANCE TEST METHODS FOR CONTROL EQUIPMENT
CEN/TS 12977-2:2010 Thermal solar systems and components - Custom built systems - Part 2: Test methods for solar water heaters and combisystems
CEN/TS 12977-1:2010 Thermal solar systems and components - Custom built systems - Part 1: General requirements for solar water heaters and combisystems
CEN/TS 12977-5:2010 Thermal solar systems and components - Custom built systems - Part 5: Performance test methods for control equipment
DIN EN 12977-1:2012-06 THERMAL SOLAR SYSTEMS AND COMPONENTS - CUSTOM BUILT SYSTEMS - PART 1: GENERAL REQUIREMENTS FOR SOLAR WATER HEATERS AND COMBISYSTEMS
DIN EN 12975-1:2011-01 Thermal solar systems and components - Solar collectors - Part 1: General requirements (includes Amendment A1:2010)
UNE-EN 12975-1:2006 Thermal solar systems and components - Solar collectors - Part 1: General Requirements

ISO 9845-1:1992 Solar energy — Reference solar spectral irradiance at the ground at different receiving conditions — Part 1: Direct normal and hemispherical solar irradiance for air mass 1,5
ISO 9459-1:1993 Solar heating — Domestic water heating systems — Part 1: Performance rating procedure using indoor test methods
ISO 9488:1999 Solar energy Vocabulary
ISO 9060:1990 Solar energy Specification and classification of instruments for measuring hemispherical solar and direct solar radiation
ISO 9553:1997 Solar energy — Methods of testing preformed rubber seals and sealing compounds used in collectors
EN 12975-1:2006+A1:2010 Thermal solar systems and components - Solar collectors - Part 1: General requirements
NFP 50 501 : 1980 LIQUID CIRCULATION SOLAR DETECTING ELEMENTS - MEASUREMENT OF THERMAL PERFORMANCES
ISO/TR 9901:1990 Solar energy Field pyranometers Recommended practice for use
ISO 9847:1992 Solar energy — Calibration of field pyranometers by comparison to a reference pyranometer
EN ISO 5167-1:2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements (ISO 5167-1:2003)
EN ISO 9488:1999 Solar energy - Vocabulary (ISO 9488:1999)
ISO 5167-1:2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full Part 1: General principles and requirements
ISO 9459-2:1995 Solar heating — Domestic water heating systems — Part 2: Outdoor test methods for system performance characterization and yearly performance prediction of solar-only systems
ASHRAE HDBK REFRIGERATION : 2014 ASHRAE HANDBOOK - REFRIGERATION
ASHRAE 41.7 : 2015 METHODS FOR GAS FLOW MEASUREMENT
ISO 9806-1:1994 Test methods for solar collectors Part 1: Thermal performance of glazed liquid heating collectors including pressure drop
ISO 9808:1990 Solar water heaters — Elastomeric materials for absorbers, connecting pipes and fittings — Method of assessment
BS 6757:1986 Methods of test for thermal performance of solar collectors
ISO 9846:1993 Solar energy Calibration of a pyranometer using a pyrheliometer
ISO 9806-2:1995 Test methods for solar collectors Part 2: Qualification test procedures
ISO 9806-3:1995 Test methods for solar collectors — Part 3: Thermal performance of unglazed liquid heating collectors (sensible heat transfer only) including pressure drop

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.