Customer Support: 131 242

  • Shopping Cart
    There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM F 1940 : 2007 : REV A : R2024

Current

Current

The latest, up-to-date edition.

Standard Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

01-09-2024

$103.13
Including GST where applicable

Committee
F 16
DocumentType
Test Method
Pages
10
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

1.1This test method covers a procedure to prevent, to the extent possible, internal hydrogen embrittlement (IHE) of fasteners by monitoring the plating or coating process, such as those described in Specifications F1137 and F1941. The process is quantitatively monitored on a periodic basis with a minimum number of specimens as compared to qualifying each lot of fasteners being plated or coated. Trend analysis is used to ensure quality as compared to statistical sampling analysis of each lot of fasteners. This test method consists of a mechanical test for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.

1.2This test method consists of a mechanical test, conducted on a standard specimen used as a witness, for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.

1.3This test method is limited to evaluating hydrogen induced embrittlement due only to processing (IHE) and not due to environmental exposure (EHE, see Test Method F1624).

1.4This test method is not intended to measure the relative susceptibility of steels to either IHE or EHE.

1.5This test method is limited to evaluating processes used for plating or coating ferrous fasteners.

1.6This test method uses a notched square bar specimen that conforms to Test Method F519, Type 1e, except that the radius is increased to accommodate the deposition of a larger range of platings and coatings. For the background on Test Method F519 testing, see publications ASTM STP 5432 and ASTM STP 962.3 The stress concentration factor is at a Kt = 3.1 ± 0.2. The sensitivity is demonstrated with a constant imposed cathodic potential to control the amount of hydrogen. Both the sensitivity and the baseline for residual hydrogen will be established with tests on bare metal specimens in air.

1.7The sensitivity of each lot of specimens to IHE shall be demonstrated. A specimen made of AISI E4340 steel heat treated to a hardness range of 50 to 52 HRC is used to produce a “worst case” condition and maximize sensitivity to IHE.

1.8 The test is an accelerated (24 h) test method to measure the threshold for hydrogen stress cracking, and is used to quantify the amount of residual hydrogen in the specimen. The specimen undergoes sustained load and slow strain rate testing by using incremental loads and hold times under displacement control to measure a threshold stress in an accelerated manner in accordance with Test Method F1624.

1.9In this test method, bending is used instead of tension because it produces the maximum local limit load tensile stress in a notched bar of up to 2.3 times the yield strength as measured in accordance with Test Method E8/E8M. A fastener that is unintentionally exposed to bending on installation may attain this maximum local tensile stress.

1.10The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.11This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.12This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM F 2882/F2882M : 2017 Standard Specification for Screws, Alloy Steel, Heat Treated, 170 ksi and 1170 MPa Minimum Tensile Strength (Inch and Metric)
ASTM B 633 : 2023 Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel
ASTM F 3019/F3019M : 2019 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
ASTM F 1136/F1136M : 2011 : R2019 Standard Specification for Zinc/Aluminum Corrosion Protective Coatings for Fasteners
ASTM A 194/A194M : 2024 Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both
ASTM F 3393 : 2024 Standard Specification for Zinc-Flake Coating Systems for Fasteners
ASTM F 1941/F1941M : 2016 Standard Specification for Electrodeposited Coatings on Mechanical Fasteners, Inch and Metric
ASTM A 574 : 2021 Standard Specification for Alloy Steel Socket-Head Cap Screws
ASTM A 193/A193M : 2024 Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications
ASTM F 2833 : 2011 : R2017 Standard Specification for Corrosion Protective Fastener Coatings with Zinc Rich Base Coat and Aluminum Organic/Inorganic Type
ASTM F 3125/F3125M : 2023 Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength

ASTM E 399 : 2024 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
ASTM E 399 : 2023 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
ASTM E 4 : 2021 Standard Practices for Force Calibration and Verification of Testing Machines
ASTM E 4 : 2024 Standard Practices for Force Calibration and Verification of Testing Machines

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.